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In this paper, we present results of calculations of linear and second-order nonlinear polarizabilities of
sector-shaped metallic nanoparticles �hemisphere is a special case� using free electron theory. The dependences
of the ground state electron density distribution and polarizabilities on various shape parameters of sector are
analyzed. The ground state electron densities near the corners and edges of sector-shaped nanoparticle are very
low and do not contribute to the linear and second-order polarizabilities. The second-order polarizability is
found to depend strongly on the angle of the sector and is shown to be proportional to the product of an
appropriately defined asymmetric volume of the particle and the third power of the electron cloud length.
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I. INTRODUCTION

Optical properties of the metallic nanostructures can be
controlled by changing their sizes, shapes, host media, and
distributions.1–6 The modifications of the linear and third-
order nonlinear optical properties arising due to confinement
of electrons in spherical nanoparticle are known for a long
time.7–10 The advancement in the nanoparticle preparation
and characterization techniques has now made it possible to
obtain particles of various other shapes.11–15 This develop-
ment has motivated several theoretical16,17 and
experimental4,5,18 studies focusing on the effect of shapes
and sizes of nanoparticles on the optical properties.

There are two types of confinements which strongly affect
the optical properties of nanoparticles, namely, quantum con-
finement and dielectric confinement. The quantum confine-
ment arises due to localized confining potential for electrons
and results in discrete atomlike energy levels. This makes the
linear and nonlinear dielectric properties of the nanoparticle
significantly different from those of the bulk. On the other
hand, dielectric confinement is caused by a difference in the
values of dielectric constants of the particle and the host
media. Because of this, a different local field is seen by the
electrons as compared to the applied one. To understand the
optical properties of nanostructures, it is necessary to take
into account both the confinements.

The dielectric confinement gets modified by the shape,
size, and dielectric constant of the host media, which results
in the splitting or the shifting of the surface plasmon reso-
nance �SPR� peaks. The shifting of SPR peak has been ex-
ploited for biosensing applications.19 For example, Miller
and Lazarides showed that the sensitivity of this shift de-
pends on the dispersion of the real part of dielectric
constant.20 We note that for particles with sizes more than
tens of nanometers, the real part of dielectric constant is
same as that of bulk. On the other hand, for particles with
sizes of a few nanometers, the dielectric constant depends
strongly on its shape and size. This provides an additional
control for improving the sensitivity in biosensing applica-

tions. It is necessary to have better understanding of the ef-
fect of shape on the dielectric constants of a nanoparticle.

Recently, there have been several studies devoted to the
nonlinear optical properties of nanoparticles. Among these,
studies aimed at finding out shapes possessing large second-
order susceptibility at wavelengths near the particle’s plas-
mon resonance are of particular interest.21,22 Second har-
monic generation efficiency of thin metallic wedge arrays
has been studied by Zheludev and Emel’yanov.23 They have
shown that it depends strongly on the shape and size of the
nanoparticle. Kuiru et al. have theoretically shown that three
spheres of decreasing radii arranged in a row can act as an
efficient nanolens and it can also have high hyperpolarizabil-
ity at its local field resonance.22

The main aim of this paper is to understand the depen-
dence of linear and nonlinear optical properties on the shape
of sector-shaped nanoparticle. A sector shape is a part of a
spherical particle enclosed by two constant azimuthal angle
planes at �=�0 /2 and �=−�0 /2 as shown in Fig. 1. Note
that hemispherical nanoparticle is a special case of a sector-
shaped particle, with �0=�. Hemispherical dots are of spe-
cial interest since these can be grown and deposited on suit-
able substrates by several methods. We analyze the
dependence of the ground state electron density distribution
and polarizabilities on various shape parameters of sector.
The scaling behavior of linear polarizability with respect to
the size of the sector-shaped particle has been studied. To
characterize the asymmetry in a particle quantitatively, we
introduce a quantity called asymmetric volume which is ana-
log to the asymmetric area proposed in our previous paper
related to the wedge-shaped particle.17 Using asymmetric
volume, we find a scaling behavior of second-order polariz-
ability with respect to the shape and size of the particle. The
rest of the paper is organized in the following manner. The
wave functions and the method by which the polarizabilities
are calculated are presented in Sec. II. In Sec. III, we present
and discuss the results of calculation. The paper is concluded
in Sec. IV. A brief derivation of second-order polarizability
using the single-particle wave functions is given in the Ap-
pendix.
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II. GENERAL FORMULATION

A. Wave functions and energies

We consider a system of N noninteracting electrons con-
fined inside a hard walled sector-shaped region of radius r0
and azimuthal angle �0 as shown in Fig. 1. The single-
particle wave functions for this system can be determined
from the Schrödinger equation:

H�i = Ei�i, �1�

with the Hamiltonian

H = −
�2

2mo
�2 + V�r� , �2�

where �i is the ith single-particle wave function and mo is
the effective mass of the electron. The confining potential is
given by V�r�=0 for �����0 /2 and r�r0 and V�r�=� oth-
erwise. In accordance with this potential, the wave functions
should satisfy the following boundary conditions:

���,�,r0� = 0 and ���, �
�0

2
,r� = 0. �3�

The normalized single-particle wave functions obtained by
solving Eq. �1� are

�mls =
�2X�2l + 1��l − m�!

jl+1�kslro���ro
3�l + m�!

	m���Pl
m�cos ��jl�kslr� ,

�4�

with

ksl = 
sl/r0, �0 = �/X, X = 1,2,3, . . . ,

m = nX, l = m,m + 1,m + 2, . . . ,

s = 1,2, . . . , and n = 1,2, . . . ,

where jl is the spherical Bessel function of order l, Pl
m is the

associated Legendre function of order l and degree m, and

sl is the sth zero of lth order spherical Bessel function. For
computational simplicity, we have taken �0 to be � /X with X
taking integral values.

The azimuthal part of the wave function is given by

	nX��� = ��− 1��n+1�/2 cos�nX�� when n is odd

�− 1�n/2 sin�nX�� when n is even.
� �5�

The corresponding eigenenergies are given by

Els =
�2
sl

2

2mor0
2 . �6�

The degeneracy of each energy level is given by the integer
part of �l /X�. We note that the forms of the wave functions
for electrons confined in a sector-shaped particle are similar
to those for a spherical nanoparticle.9 In fact, the wave func-
tions for the sector-shaped particle are subset of the wave
functions for spherical nanoparticle which satisfy the addi-
tional boundary conditions specified by Eq. �3�. The addi-
tional constraint on ��� forces the azimuthal part of wave
functions of electrons in sectors to be of definite parity
sin�m�� or cos�m�� instead of exp�−im��.

B. Dipole matrix elements and selection rules

The linear and second-order polarizabilities are calculated
by employing the analytical expressions given by


�� =
1

�0�
	
ia
�Mia

� Mai
�


ai + 

+

Mia
� Mai

�


ai − 

� , �7�

and

�����− 2
;
,
� =
− 1

2�2�0
�	

iab

 Mab

� Mia
� Mbi

�

�
ia + 2
��
bi − 
�

+
Mab

� Mia
� Mbi

�

�
ia − 
��
bi + 2
�

+
Mab

� Mia
� Mbi

�

�
ia − 
��
bi − 
��
− 	

ija

 Mij

�Mia
� Maj

�

�
ia + 2
��
aj − 
�

+
Mij

�Mia
� Maj

�

�
 ja − 
��
ai + 2
�

+
Mij

�Mia
� Maj

�

2�
 ja − 
��
ai − 
�

+
Mij

�Mia
� Maj

�

2�
ia − 
��
aj − 
��� , �8�

respectively, where � represent the Cartesian component, x,

FIG. 1. The sector-shaped nanoparticle, with radius the r0. The
corner along the z axis has azimuthal angle �0=� /X.
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y, or z, i and j represent all the occupied single-particle
states, while a and b represent all the unoccupied single-
particle states of the system. The frequency 
�� �=�E�

−E�� /�
 is the energy separation between the levels � and �,
and the frequency of the applied field is denoted by 
. The
dipole matrix element between levels � and � along the di-
rection of � is denoted by M��

� , and �0 is the permittivity of
free space. Note that in the above expression, all the transi-
tions are between the occupied and unoccupied levels,
thereby avoiding any numerical instability at spurious reso-
nances. These expressions have been obtained by applying
time-dependent perturbation theory to the canonical form of
single-particle Schrödinger equation.24,25 In deriving these
expressions, gauge invariance of the orbitals has been
exploited.25 A brief derivation of these expressions is pre-
sented in the Appendix.

For calculating linear and second-order polarizabilities,
we need to calculate different directional components of di-
pole matrix elements. In spherical coordinates, the dipole
matrix elements can be written as

M�lns��l�n�s��
� = e�n;n�

�
�ln;l�n�

� Rls;l�s�
� , �9�

where �n;n�
� , �ls;l�s�

� and Rls;l�s�
� are the azimuthal, polar

angle, and radial parts of the dipole matrix element, respec-
tively. The azimuthal parts of dipole matrix element along
the x and y directions are the same as that of the wedge
case.17 Further, due to the parity, �n;n�

x is nonzero only when
both n and n� are either odd or even integers ��n=n−n� is
even�. Similarly, �n;n�

y is nonzero only when �n is odd. On
the other hand, for the z direction,

�n;n�
z =

2X

�
�

−�/2X

�/2X

	n���	n����d� ,

=�nn�, �10�

where �nn� is the Kronecker delta.
The radial part of the dipole matrix element is the same

for all the three directions, and it is given by

Rls;l�s�
� =

2

r0
3jl+1�klsr0�jl�+1�kl�s�r0��0

r0

r3jl�klsr�jl��kl�s�r�dr .

�11�

For transition between two different levels, the above inte-
gration can be carried out by using approximate expansions
for Bessel functions as used by Hache.9 Later, Barma and
Subrahmanyam10 showed that the Debye expansion for the
large-order Bessel functions is more accurate than the ap-
proximation used by Hache. However, all of these expres-
sions have limited use in our case because for calculating the
second-order polarizability, we also need radial matrix ele-
ment between the same level, so we evaluate these integrals
numerically.

The polar angle parts of the dipole matrix element along
the x and y directions are the same, and they are calculated
numerically by using the following expression:

�ln;l�n� =
��2l + 1��2l� + 1��l − m�!�l� − m��!

2��l + m�!�l� + m��!

��
−1

1

Pl
nX�t�Pl�

n�X�t��1 − t2dt . �12�

Using the parity of associated Legendre polynomial, we find
that �ln;l�n� is nonzero only when �l+nX� and �l�+n�X� are
both even or both odd integers. Finally, the angular part of
the dipole matrix in the z direction, �ln;l�n�

z , is given by

�ln;l�n
z =

��2l + 1��2l� + 1��l − m�!�l� − m�!

2��l + m�!�l� + m�!

��
�

1

tPl
nX�t�Pl�

nX�t�dt . �13�

This integration has been carried out by using recurrence
relation of Pl

m and the condition �n=0 resulting in

�ln;l�n
z = Cl�

m�l+1,l� + Cl
m�l,l�+1, �14�

with

Cl
m =� l2 − m2

4l2 − 1
. �15�

Thus, the nonzero matrix elements exist only for �l= l− l�
=1. For the convenience of readers, all these selection rules
are summarized in Table I.

III. RESULTS AND DISCUSSIONS

Before discussing the results in detail, we mention that all
the results presented in this paper are obtained by consider-
ing the electron density inside the sector to be same as that of
bulk silver. The single-particle states are filled according to
the Pauli’s exclusion principle. The nanoparticle is assumed
to be at 0 K so that all the levels below the Fermi level are
filled and those above it are empty. For our purpose, we
consider sector-shaped particles with various sizes with the
uppermost level fully occupied.26

A. Ground state electron density distribution

The electron density distribution D�r ,� ,�� corresponding
to the ground state of a nanoparticle at 0 K is given by

D�r,�,�� = 	
i

��i�r,�,���2, �16�

where i runs over all the occupied states of the system. In
Fig. 2, we show sections of electron density distribution in

TABLE I. Selection rules for the quantum numbers l and n of
sector-shaped particles.

x direction y direction z direction

�n Even Odd 0

�l Even Even if X is even; odd if X is odd Odd
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two planes, namely, y=0 and z=0 for sectors with X=1, 2, 4,
and 8 containing nearly 200 electrons. For X=1 �hemi-
sphere�, both the planes are equivalent and it is expected that
the density of electrons is the same. This is seen in Fig. 2.
The figure also shows that for all the cases, the electron
density is almost zero near the edges and at the corners.
Moreover, the sizes of the low-density regions increase as
the azimuthal angle �0 reduces. This can be explained by
noting that the electron which has the smallest de Broglie
wavelength is the one in the Fermi level. The diffraction
limit of the electron wave forbids the electron to enter the
corners and edges where the space is narrower than half of
the Fermi wavelength of electron. When the azimuthal angle
of the particle is reduced, the narrow region increases. The
lowering of electron density near the sharp corner for larger
X can also be explained in terms of the wave functions of the
electrons. We note that for a sector-shaped particle, the mini-
mum value of the quantum number l is X. The first peak of
the function jlkslr occurs at larger values of kslr for large l.
Thus, for a sector with large X, hence large l, the density of
electron cloud is pushed away from the apex r=0.

To quantify the length of the low-density region, we de-
fine an effective length xr from the corner �r=0� as shown in
Fig. 3�a�. From this figure, simple geometrical considerations
yield

xr�X� =
d

2 tan� �

2X
� . �17�

In the above expression, d is the space between the sides of
the nanoparticle where the electron density is below a certain
cutoff value. Evaluation of the parameter d will be discussed
in more detail in the next section. The length xr plays an
important role in determining the scaling behavior of linear
polarizabilities.

B. Polarizabilities

In this section, we study the shape dependence of various
components of the linear polarizability 
 and second-order
polarizability � of sector-shaped particles by making use of
Eqs. �7� and �8�, respectively. The summations in Eqs. �7�
and �8� are performed over finite number of levels above and
below the Fermi level. The convergence is checked by in-
cluding more number of levels in the summation.

From the selection rules on �l and �n �see Table I�, it is
easy to note that if transition is allowed between a pair of
levels for applied field in any of the Cartesian directions,
then it is forbidden for the fields applied along the other two
directions. For a field in the xz plane, the transition matrix
elements are nonvanishing only if �n is even �including
zero�, but for a field applied along the y direction, �n should
be odd. Hence, a pair of levels for which if a transition is
allowed for a field along the y direction, then, the transitions
corresponding to the field along the other two directions are
forbidden. Moreover, due to the selection rule on �l if a
transition is allowed between a pair of levels for field along
the x direction, then, it is forbidden for the field applied
along the z direction. As a result of this, the chosen coordi-
nate system renders a diagonal representation for the linear
polarizability tensor. A sector-shaped particle has inversion
symmetry along the y and z directions; the nonzero compo-
nents of second-order polarizabilities are �xxx, �xyy, and �xzz
and their permutations. This is also consistent with the selec-
tion rules described above.

The linear polarizability for a cube-shaped particle has
been calculated by Genzel et al.7 They have shown that the

FIG. 2. The ground state electron density distribution of sector-
shaped nanoparticle with nearly the same volume for different azi-
muthal angles: �0=�, �0=� /2, �0=� /4, and �0=� /8 from top to
bottom along the �a� y=0 plane and �b� z=0 plane. Note that the
electron densities near the edges and corners are very small. These
low electron density regions are more appreciable for particles with
smaller apex angle.

FIG. 3. The sections �a� z=0 and �b� y=0 of a sector-shaped
nanoparticle with �0=� /X. For details about different lengths, read
the text.
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static value of linear polarizability is directly proportional to
the square of the length of the cube and the number of elec-
trons inside the cube. Similar scaling has been observed for
particles with other shapes.8 For hemisphere of radius r0, the
lengths of the particle along the x and y directions are r0 and
2r0, respectively, and the number of electrons inside the
hemisphere is proportional to r0

3. Thus, the static polarizabil-
ities 
xx and 
yy �=
zz� should vary as r0

5. To illustrate this, in
Fig. 4, we plot the logarithm of static polarizabilities 
xx and

yy as a function of logarithm of r0 along with the corre-
sponding least squares fitted lines. The slopes of the fitted
lines for 
xx and 
yy are found to be 5.03 and 5.16, respec-
tively, implying that the linear polarizability is nearly propor-
tional to r0

5.
Next, we consider sector-shaped particles with different

values of X containing nearly 200 electrons. As stated earlier,
the radius of the particle is slightly adjusted till the last level
is completely filled. Due to this, the volume of the particles
varies by about 2%. In Fig. 5, we show the variation of static
polarizability 
xx with X. From the above discussion on the
scaling behavior of static polarizabilities, it is expected that
for a given volume, 
xx should scale as r0

2. Using the fact that
r0 is proportional to �3X, we fit our calculated data in Fig. 5
with ar0

2, with a being the fitting parameter. Figure 5 clearly
shows that the fitting is not very good especially for large
values of X. The reason behind this mismatch may be due to
the fact that the effective length of the electron distribution is
shorter than the actual length of the particle. Note that the
difference between the two lengths is more for the particle
with larger X, which is consistent with the result presented in
Fig. 5. In order to deduce a scaling law, we define an effec-
tive length ref f of the particle along the x direction as �r0

−xr�X�−x0
, where the parameter x0 characterizes the length
of low electron density region which is independent of X. A
fit to 
xx with the function aref f

2 , with a, d, and x0 as fitting
parameters, is shown in Fig. 5. The best fitted points are

obtained by taking into account the volume corrections, and
the results are also displayed by crosses in Fig. 5. The best fit
value for the parameter d is found to be 0.2 nm. Next, we
focus our attention on the scaling behavior of 
zz. To this
end, we plot 
zz as a function of X in Fig. 6. Similar to the
effective length of electron cloud in the x direction, we geo-
metrically express the effective length of electron cloud in
the z direction �zr� as ��r0

2−xr
2� �see Fig. 3�b�
. The results of

our calculations are fitted with the function azr
2, and the re-

sults are displayed in Fig. 6. For this case, the best fit value
of d is found to be 0.32 nm. Note that the values of the
parameter d obtained in both the cases are of the order of
half of the Fermi wavelength of the electron in bulk, which is

FIG. 4. Plot of the logarithm of the linear polarizability as a
function of the logarithm of the radius of the particle. The squares
and solid circles represent 
xx and 
yy, respectively. The lines de-
note the least squares fits of the calculated data.

FIG. 5. The plot of static value of 
xx for sector-shaped nano-
particles with the same volume as a function of X. The crosses are
the theoretically calculated values of 
xx. The dotted and solid lines
are fit to 
xx with ar0

2 and aref f
2 , respectively. The solid circles are

the fitted points with the exact radius of the particle taken into
account.

FIG. 6. Same as Fig. 5 but for 
zz. The dotted and solid lines are
fit to 
zz with ar0

2 and a�r0
2−ref f

2 �, respectively.
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0.26 nm.27 At this point, we would like to mention that in
Refs. 28 and 29, the calculations of plasmon resonances of
two dimensional odd-shaped particles are performed with the
corners rounded by 0.25 nm to avoid numerical difficulties.
Our observation of smoothing of corners for electron cloud
provides justification for their rounding of the corners. Fur-
ther, we note that only for the case of sector with X=1 there
is a deviation from the smooth behavior and can be attributed
to the disappearance of the corner.

Further, to test the applicability of the fitting function pro-
posed above to other shapes, we carry out fitting the results
of static polarizability of wedge-shaped particle.17 We find
that for wedge-shaped particles also, the fitting function in-
corporating the length correction is better suited. In reality,
the confining potential does not have any sharp corners or
edges due to the finite size of atom. We are approximating a
real cluster by a geometric shape, so sharp edge is a conse-
quence of our modeling. The ground state electron density
distribution, as well as the behavior of linear polarizability,
shows that approximating the tip of the nanostructure by
sharp edges does not matter since regions smaller than
atomic size is not occupied anyway.

Next, we focus our attention on the frequency dependence
of the polarizability. In Fig. 7, we show the frequencies and
the corresponding strengths of polarizability 
xx for sector-
shaped particles with X=1, 2, 4, and 8. The values of the
radii of the particles are 1.2034, 1.4971, 1.8739, and
2.3532 nm, respectively. The height of the vertical lines in
Fig. 7 represents the strength of the transition given by
�M��

� �2, and each vertical line is characterized by the quantum
numbers l and s of levels � and � in the order
�l��� , l��� ,s��� ,s���
. Each transition is obtained by sum-
ming �M��

� �2 over all possible values of the quantum number
n. We note from Fig. 7 that the position of the first strong
transition gets redshifted as the value of X increases. This is
similar to the case of a particle in a box, where energy of a

given level is inversely proportional to the square of length
of the particle �see Eq. �6�
. As a result of this, the difference
between the energies also increases as the radius of the par-
ticle is reduced. The strengths of transitions for �n�0 are
much weaker as compared to the transition corresponding
�n=0. For sectors with large X, the oscillator strength of the
transitions satisfying �n=0 becomes even more stronger that
the other cases. This observation can be explained by looking
at the expression for the azimuthal part of dipole matrix el-
ements, which, for �n=0, is given by

�n;n�
x � 1 +

1

4n2X2 − 1
. �18�

On the other hand, for �n�0 and X�1, it is given by

�n;n�
x �

− 1

X2�n2 . �19�

A comparison of these two expressions clearly shows that for
large X, �n;n�

x for �n=0 has a term independent of X and n
resulting in higher value of the matrix element. Notice fur-
ther from Fig. 7 that the transitions can be grouped into two
bunches. The lower energy bunch is comprised of transitions,
with si=sj and �li− lj � =2, whereas the transitions with li= lj
and �si−sj � =1 form the high energy bunch.

Having discussed the static and frequency dependent lin-
ear polarizability of sector-shaped particles, we now present
the results of our calculation for the second-order nonlinear
polarizability. In Fig. 8�a�, we show the variation of real part
of �xxx at zero frequency for sectors with different values of
X. The sign of �xxx is positive for the hemisphere case �X
=1�, whereas for all other sectors it is negative. The magni-
tude of �xxx increases smoothly as X increases, except for the
hemisphere case, for which the magnitude is higher than that
for X=2 case. This can be explained by an argument similar
to that of asymmetric area �in this case, asymmetric volume�
presented earlier.17 In Ref. 17, we discussed a possible way
of characterizing the asymmetry of a particle which qualita-
tively explains the behavior of second-order polarizability.

FIG. 7. The resonance peak positions of 
xx for sector-shaped
nanoparticles with same volume but different values of X and r0: �a�
X=1, r0=1.2034 nm; �b� X=2, r0=1.4971 nm; �c� X=4, r0

=1.8739 nm; �d� X=8, r0=2.3532 nm. The height of the vertical
lines represents the strength of transitions. The numbers on the top
of these vertical lines are the quantum numbers l and s of the levels
i and j involved in these transitions given in the order �li , lj ,si ,sj�.

FIG. 8. Variation of real part of �xxx at zero frequency for
sector-shaped particle with nearly the same volume as a function of
X. �b� The plot between the above mentioned �xxx and VAsyref f

3 . The
solid line is the least squares fit for the calculated data.
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For this purpose, we first calculate the asymmetric volume
Vasy of a sector-shaped particle. In order to do this, we con-
sider reflection of the particle by a plane perpendicular to the
x axis at r0 /2. Then, the reflected image is superposed on the
original particle. This prescription is illustrated in Fig. 9�a�
for sector with different azimuthal angles, where we show
cross section of the particle at the z=0 plane. The nonover-
lapping volume of these two superimposed images consti-
tutes the Vasy of a given sector. Asymmetric volume calcu-
lated in this way is more for the hemisphere case �X=1� than
that for the sector having X=2. This is consistent with the
result that �xxx is larger for hemisphere than the particle with
X=2. In order to explain the difference in sign of �xxx for
hemisphere compared to other sector-shaped particles, we
show the cross section of the particle at z=0 plane of a
hemisphere and sector with X=2 in Fig. 9�b�. In contrast to
the other sector-shaped particles, note that for hemisphere,
there exists no tip at x=0. Hence, for hemisphere, an effec-
tive tip can be identified at x=r0 as shown in Fig. 9�b�. It is
this difference in the location of tip in a hemisphere and
other sectors which gives rise to different signs for �xxx. In
other words, when one moves from origin toward the posi-
tive x direction, the space available for the electron decreases
in hemisphere, while for the other sectors, it increases. This
reversal in the direction leads to change of sign of �xxx. Fur-
thermore, second-order polarizability involves product of
three dipole matrix elements �Eq. �8�
, and it is therefore
expected that � should also depend on the third power of
electron cloud length. With these scaling behaviors, we ex-
pect that �xxx should be proportional to the product of asym-
metric volume and the third power of electron cloud length.
Figure 8�b� shows dependence of �xxx on Vasy�ref f

3 for
sector-shaped particles with X. For the calculation of ref f

3 , the
values of xr�X� and x0 are taken to be same as that for the
linear polarizability case. The sign of the volume has been
taken according to the earlier argument. A least squares fit to
this plot is also shown in Fig. 8�b�. The correlation parameter
for this fitting is found to be 0.97. This shows that �xxx de-

pends linearly on the product of asymmetric volume and the
third power of electron cloud length. Thus, the value of �xxx
depends not only on the asymmetric volume but also on the
way the volume is distributed. We note here that the trend
discussed above is not exhibited by sectors with very small
energy difference between the highest occupied and the low-
est unoccupied levels �Eg�. For example, in Fig. 10, we plot
the value of �xxx at zero frequency as a function of X for
sectors containing nearly 40 electrons. Note that the magni-
tude of �xxx for X=3 is rather large compared to the expected
trend. For this sector with X=3, the energy Eg is 0.007 eV. It
is well known that the energy gap Eg is related to the stability
of the particle. Thus, all metal clusters are not equally stable,
and the stability of small spherical metal clusters is deter-
mined by magic numbers which correspond to shell filling.
The stability of a particle of any shape is determined by the
quantity N�2, where �2=E�N+1�+E�N−1�−2E�N�,30 where
E�N� denotes total energy of the particle containing N elec-
trons. In the inset of Fig. 10, we show the plot of N�2 for
sector with X=3. Note that the sector containing 42 electrons
is less stable compared to other sectors of different size. In
this paper, we do not consider particles which are less stable.

In Fig. 11, we give the dispersion plots of Re��xxx� for
sectors having X=1,2, and 4. To avoid numerical singulari-
ties, we add a small complex term i0.055 eV to all frequency
denominators in Eq. �8�. As expected, the maximum value of
�xxx itself shows behavior similar to the static case. The
maximum value of �xxx for the case of X=2 is lower than the
other cases, while the sign of �xxx at the maximum magni-
tude of �xxx is negative for all the cases except for the X
=1 case. The peak position of Re��xxx� lies near the reso-
nance of the 
xx, since the expression for �xxx also has a
denominator �Eij −
�. Furthermore, there are peaks exactly
at half the frequency of resonances of 
xx, which are due to
the two-photon resonances. The locations of two-photon
resonances can be determined by noting that the expression
for �xxx also has a denominator �Eij −2
�, which will lead to
a resonance when 
=Eij /2. We note here that these two-

FIG. 9. A geometric explanation for how the shape of the sector
decides the magnitude and sign of �xxx. For clarity, we show the
section of sector in the z=0 plane. �a� Sector-shaped nanoparticles
and their corresponding reflected images through a plane at x
=r0 /2 as solid and dashed lines for three azimuthal angles: �0=�,
�0=2� /3, and �0=� /2. The shaded region represents the nonover-
lapping volume which is the asymmetric volume of the particle. �b�
The position of the tip on hemisphere and �0=� /2 case.

FIG. 10. The static second-order polarizability for sector-shaped
nanoparticles containing approximately 40 electrons as a function
of X. Inset shows the plot of N�2 with �2=E�N+1�+E�N−1�
−2E�N� for sector with X=3. The solid arrow denotes the particle
having 42 electrons for which the �xxx result is displayed at X=3.
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photon resonances are important, since the second-harmonic
efficiency at these frequencies is high while the linear ab-
sorption loss is very low.

IV. CONCLUSIONS

In this paper, we reported the effect of shape on the scal-
ing behavior of the linear and second-order nonlinear optical
polarizabilities of sector-shaped nanoparticles. In order to
calculate the optical response properties, we derived analyti-
cal expressions for linear and second-order polarizabilities
by using time-dependent perturbation theory. Calculation of
polarizabilities using these expressions requires knowledge
of wave functions and the corresponding eigenenergies.
These were obtained analytically by solving time-
independent Schrödinger equation for N free electrons con-
fined inside a hard walled sector-shaped particle. The wave
functions for sector-shaped particles are subset of the wave
functions for a spherical nanoparticle of the same radius.
Using these wave functions, we calculated the dipole matrix
elements and deduced the selection rule for transitions. We
found that due to the wave nature of the electrons, the
ground state electron density distribution at 0 K is very small
near the edges and corners of the nanoparticles. Such low-
density regions are found wherever the space available for
the electrons is less than half of wavelength of the Fermi
electron. This reduction in the length of electron cloud plays
an important role in the scaling behavior of linear and
second-order polarizabilities.

The static polarizability along any given direction of a
sector-shaped nanoparticle is shown to be proportional to the
product of number of confined electrons inside the particle
and the square of the length of the particle along that direc-
tion with a correction for eliminating the low electron den-
sity regime. We also defined a quantity called asymmetric
volume which is obtained by reflecting the same object onto
itself and removing the overlapped volume. We show that
this quantity plays an important role in determining the mag-
nitude of second-order polarizability. We found that for par-

ticles with the same volume, the magnitude of �xxx varies
linearly as a function of product of asymmetric volume and
the cube of effective electron cloud length. The magnitude of
�xxx for hemisphere, which is a special case of sector with
X=1, was found to be more than that of a sector with �0
=� /2. This is consistent with larger asymmetric volume of a
hemisphere compared to that of a particle with �0=� /2. The
sign of second-order polarizability of hemispherical-shaped
particle is different from that of other sectors. This is attrib-
uted to a change in the location of tip when compared to the
other sectors.

Finally, we note that the connection between the nonlinear
optical polarizability and the asymmetric volume established
in this paper will be helpful in better understanding of the
scaling behavior of nanoparticles, and this will be useful in
designing nanoparticles with other shapes which possess
large hyperpolarizability.
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APPENDIX: DERIVATION OF SECOND-ORDER
POLARIZABILITY

We consider system of noninteracting N electrons in a
potential V0�r� interacting with a time-dependent external
electric field E�t�,

E�t� = E0�ei
t + e−i
t
ê , �A1�

where ê is the unit vector in any of the Cartesian coordinates.
Using the variational principle, the time-dependent canonical
equations for the single-particle orbitals can be written as24,31


H�0� + H�1� − i
�

�t
�� j�r,t� = 	

j

�ij�t�� j�r,t� , �A2�

where H�0� and H�1� are given by

H�0� = 
−
�2

2
+ V0�r�� �A3�

and

H�1� = − � · E�t� , �A4�

� is the dipole moment operator, �ij are the elements of
Lagrangian multiplier matrix, and �i�r , t� are the time-
dependent single-particle wave functions. The calculation of
� requires knowledge of perturbed orbitals and perturbed �ij.
To accomplish this task, we now expand �i and �ij in per-
turbation series with respect to the applied field,

�i = 	
m=0

�

�i
�m�, �A5�

FIG. 11. Real part of �xxx as a function of the photon energy for
sector-shaped particles with �a� X=1, �b� X=2, and �c� X=4 con-
taining approximately 200 electrons.
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�ij = 	
m=0

�

�ij
�m�. �A6�

Next, we expand �i
�1� and �i

�2� in terms of its possible fre-
quency components,

�i
�1��r,t� = �i

�1��+ 1�ei
t + �i
�1��− 1�e−i
t, �A7�

�i
�2��r,t� = �i

�2��+ 2�e2i
t + �i
�2��− 2�e−2i
t + �i

�2��0� .

�A8�

In the same way, we can expand the first order of H and the
first and second orders of �ij. The ��1� in �i

�1���1� repre-
sents the amplitude of �
 Fourier component of �i

�1� and
similarly for the ��2
� case. Using the above equations in
Eq. �A2�, we get the time-dependent coupled perturbed
single-particle equations in different orders and in different
frequency components. The zeroth-order equation is

H�0��i
�0� = �ij

�0��i
�0�. �A9�

By exploiting the nature of total energy and density under
unitary transformation, the �ij

�0� matrix can be diagonalized to
a form �ij

�0�=�ij�i.
24 The first-order equations with �
 fre-

quency components are

H�0��i
�1���1� � 
�i

�1���1� + H�1���1��i
�0�

= 	
j

��ij
�0�� j

�1���1� + �ij
�1���1�� j

�0�� . �A10�

In the same way, the second-order equations with �2
 fre-
quency components are given by

H�0��i
�2���2� � 2
�i

�2���2� + H�1���1��i
�1���1�

= 	
j

��ij
�0�� j

�2���2� + �ij
�1���1�� j

�1���1� + �ij
�2���2�� j

�0�� .

�A11�

Using the normalization condition and parallel transport
gauge, we can use the following relations between the vari-
ous orders of orbitals:25

��i
�0��� j

�k�� = �−
1

2	
l=1

k−1

��i
�l��� j

�k−l�� for k � 1

0 for k = 1.
�

�A12�

The second-order polarizabilities can be calculated using

������2
� =� H������2�dr . �A13�

For this, we need the various orders of electron density dis-
tribution

��r,t� = 	
i

�i
*�i. �A14�

The second-order frequency components of � is

��2���2� = 	
i

��i
*�0��i

�2���2� + �i
*�1���1��i

�1���1� + �i
*�2�

���2��i
�0�� . �A15�

To derive and expression for ����, the following steps are
followed.

�1� Start with the +
 part of Eq. �A11� and premultiply
with ��i

�1��+2��.
�2� Take the adjoined of +
 of Eq. �A10� with 2
 argu-

ment and postmultiply with ��i
�2��+2��.

�3� Subtract the result of step �2� from the result of step
�1�.

�4� Take the adjoint of −2
 part of Eq. �A11� and post-
multiply with ��i

�1��−2��.
�5� Premultiply the −
 part of Eq. �A10� with ��i

�2�

��−2��.
�6� Subtract the result of step �4� from the result of step

�5�.
�7� Add the result of step �3� and step �6�.
Using the resultant equation and the normalization condi-

tion, we get

��i
�1��+ 2��H�1��+ 1���i

�1��+ 1�� − ��i
�0��H†�1��+ 2���i

�2��+ 2��

+ ��i
�1��− 1��H†�1��− 1���i

�1��− 2�� − ��i
�2��− 2��H�1��− 2�

���i
�0�� = 	

j

���i
�1��+ 2��� j

�1��+ 1���ij
�1��+ 1� − �� j

�0���i
�2�

��+ 2���ij
†�1��+ 2� + �� j

�1��− 1���i
�1��− 2���ij

†�1��− 1�

− ��i
�2��− 2��� j

�0���ij
�1��− 2�� . �A16�

Rearranging and subtracting ��i
�1��−1��H�1��−2���i

�1��+1�� on
both sides and summing over i, we can get

− �����− 2
� = 	
ij
���i

�1��+ 2��� j
�1��+ 1���ij

�1��+ 1�

+ �� j
�1��− 1���i

�1��− 2���ij
†�1��− 1�

+
1

2
�� j

�1��− 1���i
�1��+ 1���ij

†�1��+ 2�

+
1

2
��i

�1��− 1��� j
�1��+ 1���ij

�1��− 2��
− 	

i

���i
�1��+ 2��H�1��+ 1���i

�1��+ 1��

+ ��i
�1��− 1��H†�−1��− 1���i

�1��− 2��

+ ��i
�1��− 1��H�−1��− 2���i

�1��+ 1��� .

�A17�

Using Mai
� = ��a

�0�����i
�0�� and the expansion for �i

�1���1�,

��i
�1���1�� = 	

a

��a
�0�����i

�0��
�a

0 − �i
0 � 


��a
�0�� , �A18�

we can write
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�����− 2
;
,
� =
− 1

2�2�0
�	

iab

 Mab

� Mia
� Mbi

�

�
ia + 2
��
bi − 
�
+

Mab
� Mia

� Mbi
�

�
ia − 
��
bi + 2
�
+

Mab
� Mia

� Mbi
�

�
ia − 
��
bi − 
��
− 	

ija

 Mij

�Mia
� Maj

�

�
ia + 2
��
aj − 
�
+

Mij
�Mia

� Maj
�

�
 ja − 
��
ai + 2
�
+

Mij
�Mia

� Maj
�

2�
 ja − 
��
ai − 
�
+

Mij
�Mia

� Maj
�

2�
ia − 
��
aj − 
��� .

�A19�
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